Health & Medical Diabetes

Vildagliption Twice Daily vs Sitagliptin Once Daily

Vildagliption Twice Daily vs Sitagliptin Once Daily

Abstract and Introduction

Abstract


Background: No previous studies have compared the DPP-4 inhibitors vildagliptin and sitagliptin in terms of blood glucose levels using continuous glucose monitoring (CGM) and cardiovascular parameters.

Methods: Twenty patients with type 2 diabetes mellitus were randomly allocated to groups who received vildagliptin then sitagliptin, or vice versa. Patients were hospitalized at 1 month after starting each drug, and CGM was used to determine: 1) mean (± standard deviation) 24-hour blood glucose level, 2) mean amplitude of glycemic excursions (MAGE), 3) fasting blood glucose level, 4) highest postprandial blood glucose level and time, 5) increase in blood glucose level after each meal, 6) area under the curve (AUC) for blood glucose level ≥180 mg/dL within 3 hours after each meal, and 7) area over the curve (AOC) for daily blood glucose level <70 mg/dL. Plasma glycosylated hemoglobin (HbA1c), glycoalbumin (GA), 1,5-anhydroglucitol (1,5AG), immunoreactive insulin (IRI), C-peptide immunoreactivity (CPR), brain natriuretic peptide (BNP), and plasminogen activator inhibitor-1 (PAI-1) levels, and urinary CPR levels, were measured.

Results: The mean 24-hour blood glucose level was significantly lower in patients taking vildagliptin than sitagliptin (142.1 ± 35.5 vs. 153.2 ± 37.0 mg/dL; p = 0.012). In patients taking vildagliptin, MAGE was significantly lower (110.5 ± 33.5 vs. 129.4 ± 45.1 mg/dL; p = 0.040), the highest blood glucose level after supper was significantly lower (206.1 ± 40.2 vs. 223.2 ± 43.5 mg/dL; p = 0.015), the AUC (≥180 mg/dL) within 3 h was significantly lower after breakfast (484.3 vs. 897.9 mg/min/dL; p = 0.025), and urinary CPR level was significantly higher (97.0 ± 41.6 vs. 85.2 ± 39.9 μg/day; p = 0.008) than in patients taking sitagliptin. There were no significant differences in plasma HbA1c, GA, 1,5AG, IRI, CPR, BNP, or PAI-1 levels between patients taking vildagliptin and sitagliptin.

Conclusions: CGM showed that mean 24-h blood glucose, MAGE, highest blood glucose level after supper, and hyperglycemia after breakfast were significantly lower in patients with type 2 diabetes mellitus taking vildagliptin than those taking sitagliptin. There were no significant differences in BNP and PAI-1 levels between patients taking vildagliptin and sitagliptin.

Introduction


The number of patients with type 2 diabetes mellitus is rapidly increasing worldwide, especially in Asian countries, because of an aging population and changes in dietary habits. The management of blood glucose levels has become a significant medical issue. The short-term aim of diabetes treatment is control of blood glucose levels, and the long-term aim is avoidance of the complications of diabetes.

Glycosylated hemoglobin (HbA1c) level reflects the blood glucose level over the preceding 2 months, and can be used to diagnose diabetes or to evaluate blood glucose control in patients known to be diabetic. Clinical and observational studies have reported that reducing HbA1c levels results in a lower incidence of cardiovascular complications in diabetic patients with a shorter time since diagnosis, but not in diabetic patients with a longer time since diagnosis. Starting treatment for diabetes at an earlier stage is therefore thought to be important for decreasing the risk of cardiovascular events.

Current diabetes treatment programs aim to lower HbA1c levels. However, recent clinical studies have found that hypoglycemia and postprandial hyperglycemia are also associated with the development of cardiovascular disease. Treatment choices should therefore consider control of variations in blood glucose levels, as well as HbA1c levels, to reduce the risk of cardiovascular events. Continuous glucose monitoring (CGM) and self-monitoring of blood glucose routinely record variations in blood glucose levels. CGM can evaluate changes in blood glucose levels, because it allows recording over several days.

DPP-4 inhibitors are oral antihyperglycemic drugs that have recently become available for diabetes treatment. They enhance the actions of incretin, which promotes insulin secretion and suppresses glucagon secretion depending on blood glucose levels, thereby improving blood glucose control without inducing hypoglycemia. Various effects of incretin such as pancreatic β-cell protection and cardiovascular protection are expected to reduce the risk of development of cardiovascular diseases. DPP-4 inhibitors are considered effective for the treatment of type 2 diabetes mellitus in Asian patients, including Japanese patients, who often have insufficient insulin secretion, in contrast to Caucasian patients who usually have insulin resistance. However, few studies have examined differences in the control of blood glucose levels between different DPP-4 inhibitors. Sitagliptin and vildagliptin are known to have different efficacy in suppressing DPP-4 activity. We conducted a crossover pilot study named Jikei-Vildagliptin and sitagliptin with CGM TO Real blood glucose control in type 2 diAbetes (J-VICTORIA). This study compared the DPP-4 inhibitors vildagliptin and sitagliptin, using CGM to evaluate blood glucose levels and analyze fluctuations in blood glucose levels. We also compared cardiovascular parameters between patients taking vildagliptin and sitagliptin by measuring plasma levels of brain natriuretic peptide (BNP) and plasminogen activator inhibitor-1 (PAI-1).



Leave a reply