Ambient Air Pollution and Low Birth Weight in Connecticut and Massachusetts
Ambient Air Pollution and Low Birth Weight in Connecticut and Massachusetts
Background: Several studies have examined whether air pollution affects birth weight ; however results vary and many studies were focused on Southern California or were conducted outside of the United States.
Objectives: We investigated maternal exposure to particulate matter with aerodynamic diameter < 10, < 2.5 μm (PM10, PM2.5) , sulfur dioxide, nitrogen dioxide, and carbon monoxide and birth weight for 358,504 births in Massachusetts and Connecticut from 1999 to 2002.
Methods: Analysis included logistic models for low birth weight (< 2,500 g) and linear models with birth weight as a continuous variable. Exposure was assigned as the average county-level concentration over gestation and each trimester based on mother's residence. We adjusted for gestational length, prenatal care, type of delivery, child's sex, birth order, weather, year, and mother's race, education, marital status, age, and tobacco use.
Results: An interquartile increase in gestational exposure to NO2, CO, PM10, and PM2.5 lowered birth weight by 8.9 g [95% confidence interval (CI) , 7.0-10.8], 16.2 g (95% CI, 12.6-19.7) , 8.2 g (95% CI, 5.3-11.1) , and 14.7 g (95% CI, 12.3-17.1) , respectively. Lower birth weight was associated with exposure in the third trimester for PM10, the first and third trimesters for CO, the first trimester for NO2 and SO2, and the second and third trimesters for PM2.5. Effect estimates for PM2.5 were higher for infants of black mothers than those of white mothers.
Conclusions: Results indicate that exposure to air pollution, even at low levels, may increase risk of low birth weight, particularly for some segments of the population.
Low birth weight is an important predictor of children's health and is associated with higher risk of infant and childhood mortality (McCormick 1985), coronary heart disease (Vos et al. 2006), and other health problems (Ashdown-Lambert 2005). For example, in a cohort of 10,803 singleton births, Lawlor et al. (2005a) found an inverse relationship between birth weight and coronary heart disease and stroke. Identified risk factors for low birth weight include mother's age (Khoshnood et al. 2005), prenatal care (Shi et al. 2004), maternal smoking and educational status (Kleinman and Madans 1985), race (Alexander et al. 2003), and socioeconomic factors (Valero de Bernabe et al. 2004). Several studies examined whether maternal exposure to air pollution adversely impacts birth outcomes, such as low birth weight, preterm delivery, intrauterine growth restriction, and postneonatal infant mortality (Glinianaia et al. 2004; Maisonet et al. 2004; SŠrám et al. 2005; Woodruff et al. 2006).
Results regarding the relationship between air pollution and birth weight are inconclusive, with some studies identifying associations where others did not, and the suite of adverse pollutants and exposure periods differing by study. For instance, higher levels of carbon monoxide were associated with low birth weight in southern California; six Northeastern U.S. cities; São Paulo, Brazil; Sydney, Australia; and Seoul, South Korea (Gouveia et al. 2004; Ha et al. 2001; Maisonet et al. 2001; Mannes et al. 2005; Ritz et al. 2000; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). However no association was identified in studies based in the Czech Republic, Taiwan, Nevada, and California (Bobak 2000; Chen et al. 2002; Lin et al. 2004; Parker et al. 2005). Particulate matter (PM) with an aerodynamic diameter < 10 μm (PM10) was linked with low birth weight in São Paulo, Southern California, Taiwan, the Czech republic, and Seoul (Dejmek et al. 1999; Gouveia et al. 2004; Ha et al. 2001; Wilhelm and Ritz 2005; Yang et al. 2003), with no such evidence provided by other work in Taiwan and six U.S. cities (Lin et al. 2004; Maisonet et al. 2001) and limited evidence in Nova Scotia, Canada (Dugandzic et al. 2006).
Three recent reviews summarized scientific evidence regarding the association between air pollution and birth weight. One review concluded that the effects of air pollution on low birth weight are not fully apparent and that current scientific knowledge is limited (Maisonet et al. 2004). Another determined that PM has either a small effect on fetal growth or no effect, and recommended further research (Glinianaia et al. 2004). The most recent review concluded that existing literature supports a causal link between air pollution and birth weight, although additional research is needed to confirm the effect, investigate the exposure window of importance, and distinguish which pollutants cause harm (Šrám et al. 2005).
The seemingly conflicting evidence may result from inadequate control for confounders, variation in populations and pollution characteristics, or differences in study design such as modeling structure, exposure time frame, and sample size. Residential mobility may differ by study population, resulting in varying levels of exposure misclassification. Effect estimates for PM and mortality and hospital admissions show spatial and temporal heterogeneity, which may be related to dissimilar chemical composition. In particular, the risk of cardiovascular admissions for the elderly from PM with an aerodynamic diameter < 2.5 μm (PM2.5) is higher in the eastern United States, including the Northeast region (Dominici et al. 2006), and mortality effects of PM10 are strongest in the northeastern United States (Peng et al. 2005). Variation in PM composition may partially explain differing results from studies of PM and low birth weight.
Many study areas for air pollution and birth weight research are outside the United States, such as those areas listed above as well as Lithuania (Maroziene and Grazuleviciene 2002), Zimbabwe (Mishra et al. 2004), Canada (Liu et al. 2003), Croatia (Mohorovic 2004), Poland (Jedrychowski et al. 2004), and China (Wang et al. 1997). Of the U.S.-based studies, most focused on Southern California (Basu et al. 2004; Parker et al. 2005; Ritz and Yu 1999; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). Only one study investigated the northeastern United States, using births from six cities over a 3-year period, and found adverse effects of CO and sulfur dioxide, but not PM10 (Maisonet et al. 2001). To the best of our knowledge, no previous study explored the impacts of nitrogen dioxide or fine PM (PM2.5) on birth weight in the northeastern United States. In this research we investigated the effects of air pollution on birth weight in Connecticut and Massachusetts over a 4-year period for SO2, NO2, CO, PM10, and PM2.5 and explored effects by gestational and trimester exposure and by race.
Abstract and Introduction
Abstract
Background: Several studies have examined whether air pollution affects birth weight ; however results vary and many studies were focused on Southern California or were conducted outside of the United States.
Objectives: We investigated maternal exposure to particulate matter with aerodynamic diameter < 10, < 2.5 μm (PM10, PM2.5) , sulfur dioxide, nitrogen dioxide, and carbon monoxide and birth weight for 358,504 births in Massachusetts and Connecticut from 1999 to 2002.
Methods: Analysis included logistic models for low birth weight (< 2,500 g) and linear models with birth weight as a continuous variable. Exposure was assigned as the average county-level concentration over gestation and each trimester based on mother's residence. We adjusted for gestational length, prenatal care, type of delivery, child's sex, birth order, weather, year, and mother's race, education, marital status, age, and tobacco use.
Results: An interquartile increase in gestational exposure to NO2, CO, PM10, and PM2.5 lowered birth weight by 8.9 g [95% confidence interval (CI) , 7.0-10.8], 16.2 g (95% CI, 12.6-19.7) , 8.2 g (95% CI, 5.3-11.1) , and 14.7 g (95% CI, 12.3-17.1) , respectively. Lower birth weight was associated with exposure in the third trimester for PM10, the first and third trimesters for CO, the first trimester for NO2 and SO2, and the second and third trimesters for PM2.5. Effect estimates for PM2.5 were higher for infants of black mothers than those of white mothers.
Conclusions: Results indicate that exposure to air pollution, even at low levels, may increase risk of low birth weight, particularly for some segments of the population.
Introduction
Low birth weight is an important predictor of children's health and is associated with higher risk of infant and childhood mortality (McCormick 1985), coronary heart disease (Vos et al. 2006), and other health problems (Ashdown-Lambert 2005). For example, in a cohort of 10,803 singleton births, Lawlor et al. (2005a) found an inverse relationship between birth weight and coronary heart disease and stroke. Identified risk factors for low birth weight include mother's age (Khoshnood et al. 2005), prenatal care (Shi et al. 2004), maternal smoking and educational status (Kleinman and Madans 1985), race (Alexander et al. 2003), and socioeconomic factors (Valero de Bernabe et al. 2004). Several studies examined whether maternal exposure to air pollution adversely impacts birth outcomes, such as low birth weight, preterm delivery, intrauterine growth restriction, and postneonatal infant mortality (Glinianaia et al. 2004; Maisonet et al. 2004; SŠrám et al. 2005; Woodruff et al. 2006).
Results regarding the relationship between air pollution and birth weight are inconclusive, with some studies identifying associations where others did not, and the suite of adverse pollutants and exposure periods differing by study. For instance, higher levels of carbon monoxide were associated with low birth weight in southern California; six Northeastern U.S. cities; São Paulo, Brazil; Sydney, Australia; and Seoul, South Korea (Gouveia et al. 2004; Ha et al. 2001; Maisonet et al. 2001; Mannes et al. 2005; Ritz et al. 2000; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). However no association was identified in studies based in the Czech Republic, Taiwan, Nevada, and California (Bobak 2000; Chen et al. 2002; Lin et al. 2004; Parker et al. 2005). Particulate matter (PM) with an aerodynamic diameter < 10 μm (PM10) was linked with low birth weight in São Paulo, Southern California, Taiwan, the Czech republic, and Seoul (Dejmek et al. 1999; Gouveia et al. 2004; Ha et al. 2001; Wilhelm and Ritz 2005; Yang et al. 2003), with no such evidence provided by other work in Taiwan and six U.S. cities (Lin et al. 2004; Maisonet et al. 2001) and limited evidence in Nova Scotia, Canada (Dugandzic et al. 2006).
Three recent reviews summarized scientific evidence regarding the association between air pollution and birth weight. One review concluded that the effects of air pollution on low birth weight are not fully apparent and that current scientific knowledge is limited (Maisonet et al. 2004). Another determined that PM has either a small effect on fetal growth or no effect, and recommended further research (Glinianaia et al. 2004). The most recent review concluded that existing literature supports a causal link between air pollution and birth weight, although additional research is needed to confirm the effect, investigate the exposure window of importance, and distinguish which pollutants cause harm (Šrám et al. 2005).
The seemingly conflicting evidence may result from inadequate control for confounders, variation in populations and pollution characteristics, or differences in study design such as modeling structure, exposure time frame, and sample size. Residential mobility may differ by study population, resulting in varying levels of exposure misclassification. Effect estimates for PM and mortality and hospital admissions show spatial and temporal heterogeneity, which may be related to dissimilar chemical composition. In particular, the risk of cardiovascular admissions for the elderly from PM with an aerodynamic diameter < 2.5 μm (PM2.5) is higher in the eastern United States, including the Northeast region (Dominici et al. 2006), and mortality effects of PM10 are strongest in the northeastern United States (Peng et al. 2005). Variation in PM composition may partially explain differing results from studies of PM and low birth weight.
Many study areas for air pollution and birth weight research are outside the United States, such as those areas listed above as well as Lithuania (Maroziene and Grazuleviciene 2002), Zimbabwe (Mishra et al. 2004), Canada (Liu et al. 2003), Croatia (Mohorovic 2004), Poland (Jedrychowski et al. 2004), and China (Wang et al. 1997). Of the U.S.-based studies, most focused on Southern California (Basu et al. 2004; Parker et al. 2005; Ritz and Yu 1999; Salam et al. 2005; Wilhelm and Ritz 2003, 2005). Only one study investigated the northeastern United States, using births from six cities over a 3-year period, and found adverse effects of CO and sulfur dioxide, but not PM10 (Maisonet et al. 2001). To the best of our knowledge, no previous study explored the impacts of nitrogen dioxide or fine PM (PM2.5) on birth weight in the northeastern United States. In this research we investigated the effects of air pollution on birth weight in Connecticut and Massachusetts over a 4-year period for SO2, NO2, CO, PM10, and PM2.5 and explored effects by gestational and trimester exposure and by race.